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Abstract: Synthetic chemicals are frequently detected in water bodies, and their concentrations vary over time. Water
monitoring programs typically employ either a sequence of grab samples or continuous sampling, followed by chemical
analysis. Continuous time‐proportional sampling yields the time‐weighted average concentration, which is taken as proxy
for the real, time‐variable exposure. However, we do not know how much the toxicity of the average concentration differs
from the toxicity of the corresponding fluctuating exposure profile. We used toxicokinetic–toxicodynamic models
(invertebrates, fish) and population growth models (algae, duckweed) to calculate the margin of safety in moving time
windows across measured aquatic concentration time series (7 pesticides) in 5 streams. A longer sampling period (14 d) for
time‐proportional sampling leads to more deviations from the real chemical stress than shorter sampling durations (3 d).
The associated error is a factor of 4 or less in the margin of safety value toward underestimating and an error of factor
9 toward overestimating chemical stress in the most toxic time windows. Under‐ and overestimations occur with ap-
proximate equal frequency and are very small compared with the overall variation, which ranged from 0.027 to 2.4 × 1010

(margin of safety values). We conclude that continuous, time‐proportional sampling for a period of 3 and 14 d for acute
and chronic assessment, respectively, yields sufficiently accurate average concentrations to assess ecotoxicological
effects. Environ Toxicol Chem 2020;39:2158–2168. © 2020 The Authors. Environmental Toxicology and Chemistry
published by Wiley Periodicals LLC on behalf of SETAC.

Keywords: Effect modeling; Risk assessment; Time‐weighted average; Ecotoxicology; Aquatic toxicology; Sampling strategy

INTRODUCTION
Synthetic chemicals such as pesticides, pharmaceuticals,

biocides, industrial chemicals, and veterinary medicines either
are released directly into the environment or reach the envi-
ronment after their intended use and disposal. They are often
termed “micropollutants” because they occur in the range of
micrograms per liter (Schwarzenbach et al. 2006). The interplay
of intermittent use patterns and environmental fate processes
results in highly time‐variable exposure concentrations in
water bodies, in particular for pesticides in small streams

(Kreuger 1998; Leu et al. 2004; Gilliom et al. 2007; Wittmer
et al. 2010; Spycher et al. 2018; Willkommen et al. 2019). As-
sessing the risk to the environment of these chemicals requires
measuring their presence in water bodies and establishing their
temporal concentration profile. Many countries maintain reg-
ular water quality monitoring programs for this purpose, their
practical implementation often delegated to regional or local
authorities. In theory, one could propose to automatically take
hourly samples to achieve high temporal resolution; however,
in practice this would quickly result in too many samples (e.g.,
720 samples per site per month). The analytical chemistry
procedures required to extract micropollutants are costly and
not feasible for thousands of samples. Therefore, monitoring
strategies typically either use a sequence of grab samples (e.g.,
European Community 2000; Baas et al. 2016) or continuous
sampling where samples are pooled over a certain time period,
followed by chemical analysis of the pooled sample for
the whole sampling duration (e.g., Moschet et al. 2014;
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Spycher et al. 2018). Continuous sampling (e.g., with on‐site
autosamplers) is more likely to capture peak concentrations of
short duration than other methods, and these short peaks can
be important (Ashauer and Brown 2013; Stehle et al. 2013).

Continuous time‐proportional sampling of water bodies has
been proposed as one strategy to capture the highly time‐
variable exposure of aquatic organisms to micropollutants
(Spycher et al. 2018). Assuming that the chemicals do not de-
grade in the sampler and the concentration of exposure peaks
is not diluted to concentrations below the limit of quantifica-
tion, this method will yield the time‐weighted average (TWA)
concentration over the sampling duration. If sampling times are
equally spaced, this corresponds simply to the average con-
centration. This average concentration is then compared with
ecotoxicity data to approximate the chemical stress posed
by such exposures (e.g., Spycher et al. 2018). The average
concentration measured in the pooled sample is taken as a
representative proxy for the real, time‐variable exposure.
However, we do not know how much the toxicity of the average
concentration differs from the toxicity of the corresponding
fluctuating exposure profile. In other words, is the realistic,
time‐variable exposure more or less stressful for aquatic or-
ganisms than the exposure to the corresponding average
concentration? We aim to answer that question by quantifying
how much the toxicity of the average concentration differs from
the toxicity of the corresponding fluctuating exposure profile
for a range of substances, species, and water bodies.

MATERIALS AND METHODS
Toxicity modeling approach

To answer this question, we carried out computer‐based
toxicity modeling. We used toxicokinetic–toxicodynamic
(TKTD) models (Ashauer and Escher 2010; Jager et al. 2014)
for Gammarus pulex, Daphnia magna, and Pimephales
promelas as well as simple exponential population growth
models for different species of Lemna and algae (see Supple-
mental Data, Appendix C). These models account for the time
course of toxicity and were selected because suitable models
and data for parameterizing them were available. The models
were calibrated using toxicity test data, and all models included
processes which allowed the organisms to recover during pe-
riods of lower exposure concentrations. This approach enables
modeling the time course of toxicity with better accuracy than

using average concentrations. The toxicity of an average con-
centration only equals the toxicity of the corresponding fluc-
tuating concentration when the organism's toxicokinetics and
toxicodynamics are much faster than the timescale of the ex-
posure fluctuations (Rozman and Doull 2000; Ashauer and
Brown 2013). This situation is called “Haber's law” or “time
effect reciprocity” (Figure 1). At the population level the same
principle holds if population dynamics are much faster than the
fluctuations of the exposure profile (Ashauer and Brown 2013).

We assume that the effect models used in the present study
represent the real time course of toxicity with sufficient accu-
racy (Ashauer and Brown 2013; Ashauer et al. 2015; Focks
et al. 2018; Jager and Ashauer 2018b; Ockleford et al. 2018;
Zimmer et al. 2018). Based on that, we simulate the toxic ef-
fects of the fluctuating exposure profile and its corresponding
average concentration and compare the 2. This predicts how
the toxicity of the average concentration (representing time‐
proportional sampling) might differ from the real toxicity
resulting from fluctuating concentrations (based on real mon-
itoring data from Swiss water bodies; see Results). In other
words, we provide an evaluation of time‐proportional water
pollution sampling by approximating the systematic error due
to divergence from Haber's law. By doing these simulations
and comparisons for different durations (3 and 14 d), we can
also assess the consequences of shorter compared with longer
sampling durations.

Margin of safety
When simulating the toxicity of exposure profiles from

monitoring data, the resulting effects are often 0%, when the
concentrations are below the toxic range, or 100%, when the
concentrations are above the toxic range (see Results). This is
because real concentrations in water bodies vary across several
orders of magnitude (Moschet et al. 2014; Spycher et al. 2018).
Nothing could be learned about the difference in toxicity
caused by different exposure profiles from such all‐or‐nothing
simulation results because we need to assess the differences in
toxicity when comparing average versus fluctuating concen-
trations. To overcome this problem, we use the margin of safety
concept (Ashauer et al. 2013). This is built on the idea that every
concentration profile can be multiplied with a factor, the margin
of safety, to bring it into the toxic range. This factor is larger than
1 if the concentration profile was originally below toxic levels, or

FIGURE 1: Illustration of time‐proportional sampling (left) and the corresponding average concentration in the pooled sample (right). If both result
in the same toxic effect, then this is a special case called “time‐concentration reciprocity” or “Haber's law.” It occurs when toxicokinetics and
toxicodynamics operate on much faster timescales than the concentration fluctuations (Rozman and Doull 2000; Ashauer and Brown 2013).
TWA= time‐weighted average.
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it can be smaller than 1 if the original concentrations were higher
than the toxic range. We define the margin of safety as the
factor that, when used to multiply the exposure concentrations,
results in 50% effects at the end of the simulated exposure
profile. This factor is also known as the “multiplication factor” to
an entire specific exposure profile that causes 50% lethality
(LP50; Ockleford et al. 2018). In simulations where the endpoint
is survival (mortality, acute toxicity), the margin of safety would
be the factor to multiply concentrations in a monitoring time
series with so that after simulating, for example, 14 d of ex-
posure 50% of G. pulex (or P. promelas) would be dead. Sim-
ilarly, we used 50% reduction in growth or reproductive output
of D. magna as well as 50% reduction in biomass produced by
Lemna or algae populations to calculate the margin of safety.
The margin of safety is calculated for simulations with the
average concentration (representing time‐proportional sam-
pling) and simulations with the fluctuating exposure profile
(representing real exposures). Then, the 2 margin of safety
values were compared to assess if the time‐proportional sam-
pling over‐ or underestimates the chemical stress and by how
much. Note that the margin of safety is similar to the toxicity–
exposure ratios traditionally used in plant protection product
authorization and can be interpreted the same way.

Monitoring data
The aquatic monitoring data originate from a monitoring

campaign conducted in 2015 in 5 small water bodies (Table 1)
situated in intensively used agricultural areas in Switzerland.
Details on the water bodies and the monitoring can be found in
Doppler et al. (2017) and Spycher et al. (2018). In short, sam-
ples were taken from March to August 2015, and automated
samplers took half‐day time‐proportional composite samples.
To reduce the effort of chemical analysis, samples during pe-
riods of dry weather were combined before analysis, assuming
that concentration peaks are rainfall‐driven. This results in
samples with a maximum temporal resolution of 12 h. Chemical
analysis was performed by liquid chromatography mass spec-
trometry (high‐resolution tandem mass spectrometry; Orbitrap‐
Technology) after enrichment via online solid‐phase extraction
(Spycher et al. 2018).

Simulated time windows
For each monitoring data set, we simulated moving time

windows of 14 or 3 d duration because these have been

proposed as durations of time‐proportional water sampling in
Switzerland (Wittmer et al. 2014). An analysis by Spycher et al.
(2018) further showed that averaging times should not exceed
3 d for acute risk assessments for pesticides in small streams
because peak exposure might be diluted to concentrations
below the limit of quantification or well below acute water
quality criteria like the maximum acceptable concentration
under the European Union Water Framework Directive. The
margin of safety was calculated for the resulting effects at the
end of each time window. Each sampling time is the starting
point of a single time window. Therefore, 2 time windows were
created for each day because the exposure data have a time
step of 12 h.

Substances studied
Although the monitoring comprised more than 100 sub-

stances, the concentration profiles of 7 pesticides were se-
lected for the effect modeling (Table 2) based on the
availability of ecotoxicity data suitable for TKTD model cali-
bration. They cover 5 different chemical classes and modes
of action (Table 2) as well as 5 different monitoring sites and
5 ecotoxicological endpoints (Table 3).

Endpoint mortality in G. pulex and P. promelas
For G. pulex and P. promelas, we simulated toxic effects on

survival using the TKTD model general unified threshold model
of survival (GUTS; Jager et al. 2011). More specifically, we used
the limit cases GUTS scaled internal concentration (SIC) with
stochastic death and individual tolerance (Nyman et al. 2012;
Ashauer et al. 2016; Jager and Ashauer 2018b). Because the
model calibration to toxicity data for GUTS‐SIC‐individual tol-
erance resulted in much poorer quality of fit than for GUTS‐SIC‐
stochastic death in G. pulex for chlorpyrifos (–log‐likelihood
stochastic death= 942, individual tolerance= 1004) and
carbendazim (–log‐likelihood stochastic death= 737, individual
tolerance= 1006), we used only GUTS‐SIC‐stochastic death for
this species. For P. promelas, we used GUTS‐SIC‐stochastic
death and GUTS‐SIC‐individual tolerance and averaged the
percentage of time data from the 2 models. Five substances
(carbendazim, chlorpyrifos, diazinon, dimethoate, and imida-
cloprid) were assessed for G. pulex in 3 locations (Table 3),
depending on the availability of monitoring data. Two sub-
stances were assessed for P. promelas in 2 locations (Table 3).
Two durations of the time window (3 and 14 d) were assessed.

TABLE 1: Description of the sampling sites

Name of water body Area arable farming (%) Area orchards (%) Area viticulture (%) Area settlement (%) Catchment size (km2)

Canale Piano di Magadino 15 0 3 17 9.0
Eschelisbach 29 13 0 0 2.0
La Tsatonire 0 1 22 11 2.4
Mooskanal 65 0 0 8 3.4
Weierbach 52 3 0 14 1.6
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The toxicity data for calibration of GUTS for G. pulex originated
from previously published studies (chlorpyrifos, Ashauer
et al. 2007; diazinon, Ashauer et al. 2010; imidacloprid, Nyman
et al. 2013) and previously unpublished acute toxicity experi-
ments (carbendazim, dimethoate) which were carried out fol-
lowing established protocols (Ashauer et al. 2011). The toxicity
data for calibration of GUTS for P. promelas also originated
from the scientific literature (Geiger et al. 1988, 1990). See
more details on the GUTS model calibration and use in Sup-
plemental Data, Appendix A, and previously unpublished tox-
icity data (G. pulex, carbendazim, dimethoate) in Supplemental
Data, Appendix D.

Endpoints growth and reproduction in D. magna
For D. magna, we simulated the effects of imidacloprid on

2 sublethal endpoints: organism growth (“length”) and re-
productive output (“offspring”) using a dynamic energy budget
model with a toxicity module (DEBtox; Jager and
Zimmer 2012). The model was calibrated based on published
data (Agatz et al. 2013), and we simulated moving 14‐d time
windows in 3 locations (Eschelisbach, La Tsatonire, and
Weierbach). For D. magna only the simulations with the 14‐d
time window are discussed because that duration is more rel-
evant for the chronic endpoints modeled in D. magna than the
3‐d time window. See more details on the DEBtox model
parameterization and simulations in Supplemental Data,
Appendix B.

Endpoint population biomass in duckweed
and algae

To assess responses to different exposure profiles of herbi-
cides, we simulated effects on biomass growth for metazachlor
and Lemna gibba, diuron and Lemna minor, metazachlor and
Scenedesmus subspicatus, as well as diuron and the blue‐green
alga Synechococcus sp. Simulations for metazachlor used ex-
posure data from Mooskanal, La Tsatonire, and Weierbach,
whereas simulations for diuron used exposure data from
Eschelisbach, La Tsatonire, and Weierbach. The effect model
was a simple exponential population model for biomass growth
as is also used to analyze standard toxicity tests with algae and
Lemna. We assessed 3‐ and 14‐d moving time windows.

The simulations were based on published growth rate data.
For metazachlor the data were taken from the draft assessment
report (European Food Safety Authority 2005). The 7‐d growth
rates for L. gibba derive from Scheerbaum (2000a). The 3‐d
growth data for the alga Scenedesmus subspicatus derive from
Scheerbaum (2000b). The 3‐d growth rates for diuron and
L. minor were published by Drost (2011). And the 3‐d growth
rates for the blue‐green alga Synechococcus sp. were taken
from Devilla et al. (2005).

Detailed documentation of modeling
The modeling work is described in more detail in 3 appen-

dices available as Supplemental Data: A (G. pulex and
P. promelas), B (D. magna), and C (Lemna sp. and algae).

TABLE 2: Selected substances, their modes of action, and the most sensitive taxonomic groupsa

Substance (CAS number) Chemical class Mode of action (Tomlin 2009)
Most sensitive taxonomic

group

Carbendazim (10605‐21‐7) Benzimidazole fungicide Inhibition of beta‐tubulin synthesis Arthropods and fish
Diuron (330‐54‐1) Phenylurea herbicide Inhibition of photosynthesis at photosystem II Cyanobacteria and algae
Metazachlor (67129‐08‐2) Chloroacetamide herbicide Inhibition of very long chain fatty acids Green algae and higher plants
Chlorpyrifos (2921‐88‐2) Organophosphate insecticide Inhibition of cholinesterase Arthropods
Diazinon (333‐41‐5) Organophosphate insecticide Inhibition of cholinesterase Arthropods
Dimethoate (60‐51‐5) Organophosphate insecticide Inhibition of cholinesterase Arthropods
Imidacloprid (138261‐41‐3) Neonicotinoid insecticide Binding to postsynaptic nicotinoid receptors in

the insect central nervous system (antagonist)
Arthropods

aBased on the environmental quality standard dossiers by the Swiss Centre for Applied Ecotoxicology (Korkaric et al. 2019).
CAS=Chemical Abstracts Service.

TABLE 3: Overview of the organism, exposure profile, and substances, showing all combinations of available monitoring data and suitable
ecotoxicity models and dataa

Substance Canale Piano di Magadino Eschelisbach La Tsatonire Mooskanal Weierbach

Carbendazim 1 1 1
Chlorpyrifos 1 2 1 2
Diazinon 1 2 1 2
Dimethoate 1 1
Imidacloprid 1 3 1 3 1 3
Diuron 4 5 4 5 4 5
Metazachlor 4 5 4 5 4 5

aNumbers indicate the modeled effect endpoint: 1=mortality of crustacean Gammarus pulex; 2=mortality of fish (Pimephales promelas); 3= growth and reproduction
of crustacean Daphnia magna; 4= growth of duckweed (Lemna gibba or Lemna minor; 5= growth of algae populations (various species, see section Endpoint population
biomass in duckweed and algae).
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RESULTS
By how much does time‐proportional sampling
over‐ or underestimate chemical stress?

To answer this question, we analyzed the margin of safety
values from the most toxic time windows, that is, those with the
smallest margin of safety values (Figure 2). The most toxic time
window varied depending on sampling site, compound, and
species (see Supplemental Data. Appendices A–C).

Generally, TWA and fluctuating concentration‐based margin
of safety values correlate well across orders of magnitude
(Figure 2). For G. pulex and P. promelas (Figure 2A), we ob-
serve that during the most toxic exposure periods the TWA
method generally predicts higher margin of safety values; that
is, it underestimates chemical stress. On average, the margin of
safety is a factor of 1.4 higher with the TWA method during the
most toxic periods, with the difference being more pronounced
for 14 d (factor 1.7 higher) than for 3 d (factor 1.1 higher). This
means that a time‐proportional sampling strategy would un-
derestimate the chemical stress by a factor of 1.4 on average
(factor 1.7 when sampling 14 d).

For D. magna (Figure 2B), we observe that during the most
toxic exposure periods the TWA method predicts higher margin
of safety values for “offspring” but lower margin of safety values
for “length”; that is, it underestimates chemical stress for effects
on D. magna offspring but overestimates chemical stress for ef-
fects on D. magna length. On average, the margin of safety cal-
culated with the TWA method for length is 0.51 times the value
calculated for fluctuating exposure. For effects on offspring, the
TWA method calculates 1.1 times the value of the fluctuating
exposure (14‐d time window). Hence, time‐proportional sampling
overestimates chemical stress for effects on growth and slightly
underestimates chemical stress for effects on offspring.

For Lemna (Figure 2C) and algae (Figure 2D), we observe
that the margin of safety values calculated with the TWA
method are mostly equal to those calculated with the fluctu-
ating concentrations (outlier: Weierbach and diuron), and
sometimes the TWA method overestimates chemical stress
(i.e., it errs on the conservative side). On average, the margin of
safety is a factor of 0.8 lower with the TWA method during the
most toxic periods for Lemna with the 3‐d time window and
equal with the fluctuating concentrations for the 14‐d time

FIGURE 2: Comparison of margin of safety values based on time‐weighted average concentrations (as proxy for time‐proportional sampling) and
based on fluctuating concentrations. General unified threshold model of survival ‐scaled internal concentration‐individual tolerance/‐stochastic death =
general unified threshold model of survival with scaled internal concentration using the assumptions of individual tolerance or stochastic death,
respectively; GUTS‐SIC‐IT=general unified threshold model of survival‐scaled internal concentration‐individual tolerance; SD= stochastic death;
TWA= time‐weighted average.

2162 Environmental Toxicology and Chemistry, 2020;39:2158–2168—R. Ashauer et al.

© 2020 The Authors wileyonlinelibrary.com/ETC



window. For algae, the margin of safety is a factor of 0.9 lower
on average with the TWA method during the most toxic
periods with the 3‐ and the 14‐d time windows.

In summary, these findings suggest that time‐proportional
sampling would underestimate chemical stress for G. pulex,
D. magna, and P. promelas and slightly overestimate chemical
stress for Lemna and algae. The largest differences, during the
most toxic time windows, were found for the chemical stress
caused by diazinon on P. promelas in Weierbach, where the
margin of safety for the 14‐d TWA was 4 times higher than the
margin of safety for the corresponding fluctuating concentration
profile and for chemical stress of diuron in Lemna in Weierbach,
where the margin of safety for the 3‐d TWA was 9 times lower
than the margin of safety of the corresponding fluctuating
concentration profile. However, the chemical stress, approxi-
mated as margin of safety values, ranges over 12 orders of
magnitude, whereas the differences between the time‐
proportional sampling method and the real, fluctuating ex-
posure are comparatively small. In other words, a difference in
the margin of safety value of <1 order of magnitude is small
when margin of safety values range over 12 orders of magnitude
(from 0.027 to 2.4 × 1010; see also Supplemental Data). The
margin of safety value is a proxy for chemical stress. Our analysis
shows that the chemical stress in small Swiss streams can vary
over 12 orders of magnitude depending on location, com-
pound, and species. In this context the calculated error of the
time‐proportional sampling method (i.e., the difference in
chemical stress from the real exposure profile) is relatively small.

How often does time‐proportional sampling
over‐ or underestimate chemical stress?

To answer this question, we analyzed the margin of safety
values from all time windows over the whole length of the
monitoring profiles.

The simulations with gammarids and fish show that during a
14‐d period the TWA method deviates more often from the
fluctuating exposure assessment than during a 3‐d window
(Figures 3 and 4). Both the 3‐ and the 14‐d duration simulations
show the time‐proportional sampling more frequently under-
estimating chemical stress for G. pulex (17 and 32% of the time,
respectively) than overestimating chemical stress (11 and 26%
of the time, respectively; Figure 3). For P. promelas, the 3‐d
simulations underestimate chemical stress 13% of the time
and overestimate chemical stress 4% of the time, and the 14‐d
simulations underestimate chemical stress 39% of the time and
overestimate chemical stress 0% of the time (Figure 4). This is
because peak exposures are driving the toxicity for diazinon
and chlorpyrifos in P. promelas. Averaging out the peaks to
lower TWA concentrations almost always reduces the toxicity
for these 2 compounds in P. promelas; however, the absolute
error is a factor of 2.1 or less (see margin of safety values,
previous section).

The simulations with D. magna and imidacloprid show that
over‐ and underestimations of chemical stress are frequent
(Figure 5). Overestimation of chemical stress in the time‐
proportional sampling occurs more frequently overall (44% of
the time overestimated vs 24% underestimated). This is due to
overestimation of chemical stress for effects on growth (58% of
the time overestimated vs 12% underestimated), whereas ef-
fects on reproduction are generally underestimated by the
time‐proportional sampling (30% of the time overestimated vs
36% underestimated).

Simulations of biomass growth with duckweed and algae
show that during a 14‐d period the TWAmethod deviates more
often from the fluctuating exposure assessment than during a
3‐d window (Figure 6). For duckweed (Lemna), we observe
that the 3‐d simulations overestimate chemical stress but
that the 14‐d simulations seem to underestimate chemical
stress (28% of the time) more often than overestimating it

FIGURE 3: Fraction of time windows during which time‐proportional sampling (TWA) would over‐ or underestimate the margin of safety for
gammarids: TWA> fluctuating means the hazard is underestimated (red), and TWA< fluctuating means that time‐proportional sampling would
overestimate (green). Comparison of 3 d (left) versus 14 d (right). The fraction of equal hazard (gray) generally corresponds to very low exposure,
which approaches infinitely large margin of safety values when exposure approaches zero (cutoff value in practice).
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(17% of the time). For algae, we observe that it depends
more strongly on the location and substance sampled whether
the 3‐ or 14‐d duration over‐ or underestimates chemical
stress compared with the other species. However, the time‐
proportional sampling would generally overestimate chemical
stress for algae on average (overestimation, 12% [3 d] and 36%
[14 d]; underestimation, 11% [3 d] and 15% [14 d]).

DISCUSSION
Insights from the margin of safety analysis and its
limitations

To our knowledge, this is the first time that margin of safety
(Ashauer et al. 2013) or LP50 (Ockleford et al. 2018) values
were calculated for real exposure time series from environ-
mental monitoring. A margin of safety value is a proxy for
risk of toxicity and has a similar interpretation as the
toxicity–exposure ratio or risk quotient (van Leeuwen and
Vermeire 2007). Small margin of safety values, near 1 or
below, indicate chemical stress; and large values indicate little
or no chemical stress. Our analysis, using TKTD modeling to
quantify effects on invertebrates and fish and population
modeling for effects on algae and aquatic plants, confirmed
the findings of Spycher et al. (2018), who calculated risk
quotients for the same monitoring data and found several
instances of potential risk to aquatic organisms. In the most
toxic time windows, we calculated margin of safety values far
below 1 for algae (La Tsatonire, diuron; Figure 2D), which
indicates a potential risk to primary producers. We also found
several instances of margin of safety values above but within
an order of magnitude of 1. These indicate that for the effect
endpoints and species combinations modeled, we would not
expect effects from exposure to the modeled substances
alone. Interestingly, we found a difference in margin of safety
values for D. magna when calculated for effects on growth or
reproduction, and we observed outlier data points for algae
and Lemna with diuron in the Weierbach. The endpoint‐
specific results for D. magna suggest that the physiological
mode of action is important (see also Ashauer and
Jager 2018), and it should also be noted that D. magna is less
sensitive to imidacloprid than other crustacean species
(Ashauer et al. 2011; Roessink et al. 2013). Further, we found

FIGURE 4: Fraction of time windows during which time‐proportional sampling (TWA) would over‐ or underestimate the margin of safety for fish:
TWA> fluctuating means the hazard is underestimated (red), and TWA< fluctuating means that time‐proportional sampling would overestimate
(green). Comparison of 3 d (left) versus 14 d (right). The fraction of equal hazard (gray) generally corresponds to very low exposure, which
approaches infinitely large margin of safety values when exposure approaches zero (cutoff value in practice).

FIGURE 5: Fraction of time windows during which time‐proportional
sampling (time‐weighted average [TWA]) would over‐ or underestimate
the margin of safety for Daphnia magna and imidacloprid: TWA>
fluctuating means the chemical stress is underestimated (red), and
TWA< fluctuating means that time‐proportional sampling would
overestimate (green). Comparison of 3 d (left) versus 14 d (right). The
fraction of equal hazard (gray) generally corresponds to very low ex-
posure, which approaches infinitely large margin of safety values when
exposure approaches zero (cutoff value in practice).
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that either under‐ or overestimation of risk for D. magna oc-
curred frequently. We know already that TKTD model results
are sensitive to changes in exposure patterns (Ashauer
et al. 2013; Van den Brink et al. 2019), but we do not know if
our findings would be observed for a wider range of exposure
profiles too. Understanding the causes of these observations
warrants further research.

It is important to bear in mind that we simulated only a
small selection of sublethal effects in a very small number of
species and locations. A more comprehensive understanding
will become possible in the near future because more and
more TKTD models parameterized for additional species
are becoming available (e.g., Focks et al. 2018; Zimmer
et al. 2018; Vighi et al. 2019; Dalhoff et al. 2020) as well as a
better understanding of how species traits determine
TK and TD (Van Den Berg et al. 2019; Dalhoff et al. 2020).
Since our study, conducted mostly in 2017, new software
for TKTD modeling with GUTS became available
(Openguts 2019), which means that the problem with poor fits

for GUTS‐SIC‐individual tolerance for 2 of our data sets could
probably be overcome in the future. Also, we do not know
how accurate our models are because TKTD model validation
studies are rare (Augusiak et al. 2014; Jager and
Ashauer 2018a). Most of our analysis was based on acute
toxicity data, and all of our analyses concerned only exposure
to a single substance at a time. Other possible effects of mi-
cropollutants on aquatic life, such as those on the endocrine
system (Ankley and Villeneuve 2015), community‐level im-
pacts (Baert et al. 2016; Rohr et al. 2016), and epigenetic
effects or behavioral changes (Nyman et al. 2013; Pedersen
et al. 2013; Ford et al. 2018), might be ecologically relevant
for chronic risk assessment of micropollutants as well as mix-
ture toxicity (Ashauer et al. 2017; Escher et al. 2020) and in-
teractions with other, nonchemical stressors (Holmstrup
et al. 2010; Woodward et al. 2012). We analyzed models
for each species separately. In addition, one could model the
effects on species sensitivity distributions (Van den Brink
et al. 2019) and communities (De Laender et al. 2016; Strauss

FIGURE 6: Fraction of time windows during which time‐proportional sampling (time‐weighted average [TWA]) would over‐ or underestimate the
margin of safety for Lemna and algae: TWA> fluctuating means the chemical stress is underestimated (red), and TWA< fluctuating means that time‐
proportional sampling would overestimate (green). Comparison of 3 d (left) versus 14 d (right). The fraction of equal hazard (gray) generally
corresponds to very low exposure, which approaches infinitely large margin of safety values when exposure approaches zero (cutoff value in
practice).
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et al. 2017). Our species were selected based on the avail-
ability of appropriate TKTD models and the data required to
parameterize these and do not necessarily include the most
sensitive species for a given substance (Van Den Berg
et al. 2019). However, these aspects were not considered
because our aim was to compare TWA concentrations with
time‐proportional sampling.

Choosing a time‐proportional sampling duration
Our aim was to evaluate water sampling strategies

(Robertson and Roerish 1999; Ort et al. 2010), specifically from
an ecotoxicological effects perspective, because previous re-
search has focused only on comparing average concentrations
derived with different sampling methods such as grab samples
and passive sampling (Hyne et al. 2004; Fernández et al. 2014)
or on theoretical (eco)toxicological considerations (Rozman and
Doull 2000; Ashauer and Brown 2013). We found that when
using a 3‐d sampling duration our simulations showed con-
siderably fewer time periods when time‐proportional sampling
either under‐ or overestimates chemical stress compared to
14‐d sampling duration. Therefore, it is reasonable to use a 3‐d
sampling duration, or a similarly short sampling duration, for
assessment of acute effects. For chronic effects assessment, a
longer sampling duration is more realistic. With the exception
of fish, the 14‐d sampling duration simulated in the present
study shows a balanced frequency of over‐ or underestimations
of chemical stress and a small overall error compared with the
magnitude of variation in chemical stress. Hence, using 14‐d
time‐proportional sampling to measure micropollutants for
assessment of chronic effects appears reasonable from the
perspective of time‐variable exposure, but more simulations
with different compounds would be desirable to strengthen the
evidence base, especially in the case of fish. Furthermore, the
question answered in the present study is not the only con-
sideration when setting the duration of the water sampling for
the assessment of chronic risk—other aspects need to be
considered too, for example, the duration of ecotoxicity studies
(Baas et al. 2010; Ashauer and Brown 2013), the ecology of the
relevant species (Calow et al. 1997; Rohr et al. 2016), and the
risk‐management context of the assessment (van Leeuwen and
Vermeire 2007).

Generally, the model simulations show that a longer sam-
pling period (14 d) for time‐proportional water sampling leads
to more deviations from the real chemical stress than shorter
sampling durations (3 d). However, the overall picture also
shows that under‐ and overestimations of chemical stress occur
with approximately equal frequency, although for some loca-
tions, compounds, and species we observed clear under‐ or
overestimation of chemical stress (e.g., 14‐d fish and 3‐d
Lemna). When under‐ or overestimations of chemical stress
occur, they are very small compared with the overall variation in
chemical stress observed. In this data set, the chemical stress to
aquatic organisms from pesticides in Swiss streams ranged over
12 orders of magnitude, from 0.027 to 2.4 × 1010 (margin of
safety values, where small values indicate a chemical stress and
large values indicate safety).

CONCLUSIONS
We found that the time‐proportional sampling method is

associated with an error of factor 4 or less in the margin of
safety value toward underestimating chemical stress and an
error of factor of 9 toward overestimating chemical stress. This
error margin is small compared to 12 orders of magnitude
variation in chemical stress across locations, compounds, and
species. We conclude that time‐proportional sampling is suit-
able for chemical water quality monitoring because it charac-
terizes the concentration time series sufficiently well.
Continuous time‐proportional sampling for a period of 3 and
14 d for acute and chronic assessment, respectively, yields
sufficiently accurate average concentrations to assess ecotox-
icological effects.
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the Wiley Online Library at https://doi.org/10.1002/etc.4838.
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